NanoTHOR

Low-Cost Launch of Nanosatellites to Deep Space

Dr. Rob Hoyt **Tethers Unlimited, Inc**

11711 N. Creek Pkwy S., Suite D113 Bothell, WA 98011 425-486-0100 hoyt@tethers.com

NanoTHOR

Challenge Addressed:

- Emerging nanosatellite and CubeSat technologies could enable NASA to perform Exploration missions at lower cost, but rideshare opportunities to Earth escape are very rare
- Restrictions on secondary payload stored energy limit opportunities to use conventional rockets to boost nanosats

NanoTHOR Concept

Proposed Solution:

- Launch nanosatellite as ride-share on GEO satellite launch
- The "Nanosatellite Tethered High-Orbit Release" (NanoTHOR) system will use a simple high-strength tether to scavenge the orbital momentum and residual propellant of GEO upper stages to 'sling' multiple nanosatellites to Earth-escape
- NanoTHOR enables fast (e.g. few hours or few days) transfer of multiple nanosats to escape trajectories with effective specific impulse comparable to EP thrusters that would require many months

NanoTHOR Concept

Benefits

- Enables delivery of secondary payloads to deep space trajectories without requiring chemical rockets that would pose a risk to the primary payload
- NanoTHOR tether is re-usable, and can boost multiple nanosatellites with a lower total required mass than rocket technologies

CONOPS

- Nanosat & NanoTHOR ride as secondary payloads on GEO satellite launch
- NanoTHOR uses slender, high-strength tether to transfer stage's orbital energy to the nanosatellite

Tether Spin-Up CONOPS

- Getting tether deployed and 'spun up' in highly elliptical
 GTO orbit is a significant dynamics control challenge
- In elliptical orbit, the tether spin angular momentum and orbital angular momentum are coupled
- Tether spin gets a 'kick' every time it passes through perigee
 - Direction of kick depends upon phasing of tether rotation w.r.t. orbit
- Once tether is spinning fast enough to rotate several times during a perigee pass, the angular momentum exchange becomes small
- Proposed Solution:
 - First, to start tether spinning:
 - Control tether deployment over several orbits to maximize transfer of orbit angular momentum to spin angular momentum
 - Once a stable spin is established:
 - Retract tether to increase spin rate (via conservation of angular momentum) until required tip velocity is reached

Tether Spin Equations of Motion

Rate of change of tether rotation rate w.r.t. true anomaly

$$q'' = 2(q'+1)\left[\frac{e\sin n}{1 + e\cos n} - M^* \frac{L'}{L}\right] - \frac{3}{1 + e\cos n}\sin q\cos q$$

Rate of change of tether deployment rate w.r.t. true anomaly

$$\binom{1}{1} = \frac{d\binom{1}{1}}{dn}$$

n = true anomaly

e = eccentricity

q = in-plane libration angle

 $L = \frac{\ell}{L}$ = normalized tether length

 ℓ = deployed tether length

L = total tether length

$$T^* = \frac{T}{m_1 \dot{n}^2 L \left(m_2 + m_t \right) / \left(m_1 + m_2 + m_t \right)} = \text{normalized tether tension}$$

$$M^* = m_1 \left(m_2 + \frac{m_t}{2} \right) / \left[m^* m \right]$$

$$M^{***} = \left(2m_1 - m \right) \frac{m_t}{2} / \left[m_1 \left(m_2 + m_t \right) \right]$$

$$M^{****} = \left(m_2 + \frac{m_t}{2} \right) / \left(m_2 + m_t \right)$$

$$m = m_1 + m_2 + m_t$$

$$m^* = \frac{\left(m_1 + \frac{m_t}{2} \right) \left(m_2 + \frac{m_t}{2} \right)}{m} - \frac{m_t}{6} = \text{reduced mass of system}$$

www.tethers.com

Spin Equation Analysis

- Tether deployment always slows rotation
- Tether retraction increases rotation rate

$$q'' = 2(q'+1)\left[\frac{e \sin n}{1 + e \cos n} - M^* \frac{L'}{L}\right]$$

No dependence on and symmetric about periapse, so contribution minimal

Solution: Control tether deployment rate so that tether passes perigee with ~ -30° in-plane libration angle while keeping tension always > 0

We want θ to be \approx -30° to maximize spin-up of tether during perigee pass

e.g. keep:
$$L'' < \frac{2e \sin n}{1 + e \cos n} L' - M^{**} \frac{(L')^2}{L} + M^{***} L \left[(q' + 1)^2 + \frac{3\cos^2 q - 1}{1 + e \cos n} \right]$$

Tether Spin-Up in GTO

- Deploy tether over 2 orbits at ~50 cm/s
- Vary deployment rate so that tether is ~30° behind vertical when approaching perigee
- Gravity gradient provides torque to get tether spinning

Retract tether at ~25 cm/s to increase spin rate

Tip velocity necessary to toss payload to escape

We can use tether reeling in the Earth's gravity well to spin up the tether

Tether Design & Mass

- Material: Dyneema/Spectra (HMWPE)
- Braided tape of 88-Tex yarns (think dental floss)
- Stepwise-tapered to optimize mass

- Total tether mass: 12 kg ← for a 10 kg payload
- Tether mass is > solid propellant mass to provide the same ΔV, but tether is re-usable for multiple payloads

Orbital Winch™

- NanoTHOR leverages tether deployment/retraction mechanism technology developed under NASA and DARPA funding
 - Deployer component matured to TRL-5 by microgravity testing
 - High-load retraction capability demonstrated to TRL-4

Summary

- Primary objective is to enable frequent and low-cost delivery of nanosats to Earth escape trajectories
- Secondary objective is to develop the "smallest, simplest" <u>useful</u> momentum-exchange tether to enable affordable maturation of tether propulsion
- NanoTHOR "harvests" orbital energy from spent upper stage to boost nanosat payloads
- Control of tether deployment and retraction can enable ΔV's sufficient for GTO->Escape boost
 - Boosting multiple nanosats per mission is feasible
- Leverage recent multi-\$M investments by NASA & DoD in tether tech maturation to enable near-term validation
- Coordination with launch provider needed to enable operations